
DOI 10.1140/epja/i2003-10006-6

Eur. Phys. J. A 17, 223–234 (2003) THE EUROPEAN
PHYSICAL JOURNAL A

Quark-hadron duality in electron-pion scattering

W. Melnitchouka

Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606, USA

Received: 10 February 2003 /
Published online: 27 May 2003 – c© Società Italiana di Fisica / Springer-Verlag 2003
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Abstract. We explore the relationship between exclusive and inclusive electromagnetic scattering from the
pion, focusing on the transition region at intermediate Q2. Combining Drell-Yan data on the leading twist
quark distribution in the pion with a model for the resonance region at large x, we calculate QCD moments
of the pion structure function over a range of Q2, and quantify the role of higher twist corrections. Using
a parameterization of the pion elastic form factor and phenomenological models for the π → ρ transition
form factor, we further test the extent to which local duality may be valid for the pion.

PACS. 13.60.Hb Total and inclusive cross sections (including deep-inelastic processes) – 12.40.Nn Regge
theory, duality, absorptive/optical models – 13.40.Gp Electromagnetic form factors

1 Introduction

The nature of the transition between quark and hadron
degrees of freedom in QCD is one of the most funda-
mental problems in strong-interaction physics. This tran-
sition has been extensively explored within nonperturba-
tive models of QCD, which, while retaining some of the
apposite features of QCD, make simplifying assumptions
that allow approximate solutions to be found [1]. Consid-
erable progress has also been made recently in calculating
hadronic properties directly from QCD via lattice gauge
theory, and much is anticipated from this approach in the
near future with significant advances in computing power
available [2]. It is clear, however, that while a quantita-
tive description of hadronic structure from first principles
in QCD is still some time away, phenomenological input
will remain crucial in guiding our understanding for the
foreseeable future.

Of course, assuming QCD can ultimately describe the
physics of hadrons, the transition from quarks and gluons
to hadrons can be considered trivial in principle from the
point of view of quark-hadron duality. So long as one has
access to a complete set of states, it is immaterial whether
one calculates physical quantities in terms of elementary
quark or effective hadron degrees of freedom. In practice,
however, truncations are unavoidable, and it is precisely
the consequences of working with incomplete or truncated
basis states that allows one to expose the interesting dy-
namics that drives the quark-hadron transition.

The duality between quarks and hadrons reveals it-
self in spectacular fashion through the phenomenon of
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Bloom-Gilman duality in inclusive lepton-nucleon scatter-
ing, eN → eX. Here, the inclusive F2 structure function
of the nucleon measured in the region dominated by low-
lying nucleon resonances is observed to follow a global
scaling curve describing the high-energy data, to which the
resonance structure function averages [3,4]. The equiva-
lence of the averaged resonance and scaling structure func-
tions in addition appears to hold for each prominent res-
onance region separately, suggesting that the resonance-
scaling duality also exists, to some extent, locally.

The correspondence between exclusive and inclusive
observables in electroproduction was studied even before
the advent of QCD [5–10]. Within QCD, the appearance
of duality for the moments of structure functions can be
related through the operator product expansion (OPE) to
the size of high twist corrections to the scaling structure
function [11], which reflect the importance of long-range
multi-parton correlations in the hadron [12]. The appar-
ent early onset of Bloom-Gilman duality for the proton
structure function seen in recent Jefferson Lab experi-
ments [4] indicates the dominance of single-quark scat-
tering to rather low momentum transfer [13]. It is not a
priori clear, however, whether this is due to an overall
suppression of coherent effects in inclusive scattering, or
because of fortuitous cancellations of possibly large cor-
rections. Indeed, there are some indications from models
of QCD that the workings of duality may be rather dif-
ferent in the neutron than in the proton [14,15], or for
spin-independent and spin-dependent structure functions.

From another direction, one knows from the large Nc

limit of QCD [16] that duality is an inevitable consequence
of quark confinement; in the mesonic sector one can prove
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(at least in 1+1 dimensions) that an exactly scaling struc-
ture function can be constructed from towers of infinites-
imally narrow mesonic qq̄ resonances [17]. This proof-of-
principle example provides a heuristic guide to the appear-
ance of the qualitative features of Bloom-Gilman duality,
and has been used to motivate more elaborate studies of
duality in quark models, even though application to the
baryon sector is somewhat more involved [18]. Given that
Bloom-Gilman duality is empirically established only for
baryons (specifically, the proton), while the application of
theoretical models is generally more straightforward in the
meson sector, a natural question to consider is whether,
and how, duality manifests itself phenomenologically for
the simplest qq̄ system in QCD —the pion.

As the lightest qq̄ bound state, the pion plays a special
role in QCD. Indeed, in Nature the pion presents itself as
somewhat of a dichotomy: on the one hand, its anoma-
lously small mass suggests that it should be identified
with the pseudo-Goldstone mode of dynamical breaking
of chiral symmetry in QCD; on the other, it ought to be
described equally well from the QCD Lagrangian in terms
of current quarks, with particularly attractive forces act-
ing in the JP = 0− channel. The complementarity of these
pictures may also reflect, loosely speaking, a kind of du-
ality between the effective, hadronic description based on
symmetries, and a microscopic description in terms of par-
tons. This duality is effectively exploited in calculations of
hadron properties via the QCD sum rule method [19], in
which results obtained in terms of hadronic variables using
dispersion relations are matched with those of the OPE
using free quarks.

In this paper we connect a number of these themes in
an attempt to further develop and elucidate the issue of
quark-hadron duality for the pion, focusing, in particular,
on insights that can be gained from phenomenological con-
straints. Specifically, we shall examine the possible con-
nections between the structure of the pion as revealed in
exclusive scattering, and that which is measured in inclu-
sive reactions. The latter can in principle be reconstructed
given sufficient knowledge of the form factors which pa-
rameterize transitions from the ground-state pion to ex-
cited states. We do not attempt this rather challenging
task directly; instead, we use the tools of the OPE to or-
ganize moments of the pion structure function according
to (matrix elements of) local operators of a given twist.
This exercise is possible because the structure function of
the pion has been determined from Drell-Yan πN scatter-
ing data at high Q2. Of course, the absence of fixed pion
targets means that the structure of the pion at low excita-
tion massW is not known, with the exception of the elastic
pion contribution, which has been accurately measured for
Q2 � 2 GeV2 in π+ electroproduction off the proton.

To complement the dearth of data on specific π → π∗
transitions above threshold (but below the deep inelastic
continuum), we consider a simple model for the pion struc-
ture function in which the low-W spectrum is dominated
by the elastic and π → ρ transitions, on top of a con-
tinuum which is estimated by evolving the leading twist
structure function to lower Q2. The discussion at low W

is necessarily more qualitative than for the corresponding
case of the nucleon [20] where ample data exist. However,
even within the current limitations, this analysis provides
an estimate of the possible size of higher twist effects in
the pion structure function, and the role of the resonance
region in deep inelastic scattering (DIS) from the pion.
Preliminary results for the higher twist corrections have
been presented in ref. [21]. Here, we shall extend that anal-
ysis by considering the extent to which local duality may
be valid in the pion structure function, and possible con-
straints on the x → 1 behavior which can be inferred from
the elastic channels.

This study is timely in view of experiments on the pion
elastic [22,23] and transition [24,25] form factors being
planned or analyzed at Jefferson Lab, which will probe the
interplay between soft and hard scattering from the pion
and the onset of perturbative QCD (pQCD) behavior. Fur-
thermore, recent measurements of the inclusive pion struc-
ture function via the semi-inclusive charge-exchange reac-
tion, ep → enX, at HERA have yielded some unexpected
results at low x [26], and new experiments over a large
range of x are being planned at Jefferson Lab at lower
Q2 [27]. This paper discusses the possible interrelations
between these measurements, in the quest for obtaining a
consistent, unified description of the structure of the pion
in electromagnetic scattering.

The structure of this paper is as follows. After briefly
reviewing in sect. 2 the definitions and kinematics of inclu-
sive lepton scattering from the pion, in sect. 3 we begin
the discussion by focusing on the special case of elastic
scattering. We construct an efficient parameterization of
the elastic pion form factor in the space-like region con-
sistent with the Q2 → 0 and Q2 → ∞ constraints. An
analysis of moments of the pion structure function is pre-
sented in sect. 4, including the extraction of higher twists
and a discussion of the role of the resonance region. Some
of these results appeared in ref. [21]. In addition, we care-
fully examine the large-x region, which is important for
high moments, and compare predictions of several models
for the leading and higher twist contributions to the pion
structure function as x → 1. The relation of the struc-
ture function at x ∼ 1 with the Q2 → ∞ dependence of
elastic form factors is discussed in sect. 5, where we test
the hypothesis of local Bloom-Gilman duality between the
scaling structure function and the exclusive elastic and
π → ρ transition contributions. Concluding remarks and
a survey of future avenues for developments of the issues
presented are outlined in sect. 6.

2 Definitions

Inclusive scattering of an electron, or any charged lepton,
from a pion, eπ → eX, is described by the pion hadronic
tensor,

Wπ
µν = (2π)3δ4(p+ q − pX)

×
∑
X

〈π|Jµ(0)|X〉〈X|Jν(0)|π〉 , (1)
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where p and q are the pion and virtual photon four-
momenta, respectively, and pX is the momentum of the
hadronic final state with invariant mass squared W 2 =
m2

π − q2 + 2mπν, with ν the energy transfer in the pion
rest frame and mπ the pion mass. The hadronic tensor
can be parameterized in terms of two structure functions,

Wπ
µν =

(
−gµν +

qµqν

q2

)
Wπ

1 (ν, q
2)

+
(
pµ − p · q

q2
qµ

)(
pν − p · q

q2
qν

)
Wπ

2 (ν, q
2)

m2
π

, (2)

where Wπ
1 and Wπ

2 are in general functions of two vari-
ables, for instance ν and q2. In the limit as ν → ∞ and
Q2 ≡ −q2 → ∞, with x = Q2/2p·q = Q2/(W 2−m2

π+Q2)
fixed, the functions Wπ

1 and νWπ
2 become scale-invariant

functions of x,

mπW
π
1 (ν, q

2) → Fπ
1 (x) , (3a)

νWπ
2 (ν, q

2) → Fπ
2 (x) . (3b)

Furthermore, in this limit these functions satisfy the
Callan-Gross relation, Fπ

2 = 2xFπ
1 [28]. Radiative QCD

corrections introduce explicit dependence of Fπ
1,2 on the

strong-coupling constant, αs(Q2). While only transversely
polarized photons contribute to the Fπ

1 structure function,
Fπ

1 ∝ σT , the Fπ
2 structure function receives both trans-

verse and longitudinal contributions, Fπ
2 ∝ σT +σL, where

σT and σL are the transverse and longitudinal photoab-
sorption cross-sections, respectively.

3 Pion form factor

The inclusive spectrum begins with the elastic peak at
W = mπ, or equivalently, x = 1. Because the pion is spin-
less, elastic scattering from the pion contributes only to
the longitudinal cross-section, so that the elastic contri-
bution to the Fπ

1 structure function vanishes. The elastic
contribution to the Fπ

2 structure function is proportional
to the square of the elastic pion form factor, Fπ(Q2),

F
π(el)
2 (x = 1, Q2) = 2mπν

(
Fπ(Q2)

)2
δ(W 2 −m2

π) , (4)

where Fπ(Q2) is the elastic pion form factor. As the most
basic observable characterizing the composite nature of
the lightest bound state in QCD, the elastic form fac-
tor of the pion is of fundamental importance to our un-
derstanding of hadronic structure. In the approximation
that the pion wave function is dominated by its lowest
qq̄ Fock state, the pion form factor becomes amenable to
rigorous QCD analysis. Indeed, it is well known that the
asymptotic behavior of the pion form factor is calculable
in pQCD [29–31],

Fπ(Q2) → 8παs(Q2) f2
π

Q2
as Q2 → ∞ , (5)

where fπ = 132 MeV is the pion decay constant. Cur-
rent data on Fπ, summarized in fig. 1, indicate that there
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Fig. 1. Pion form factor as a function of Q2. Shown are the
best fits (solid lines) using eq. (6), a monopole fit (dashed line)
with a cut-off mass of 0.74 GeV, and the asymptotic prediction
from pQCD (dotted line).

are large soft contributions still at Q2 � 2 GeV2 [32,33].
The low-Q2 data are obtained from scattering pions off
atomic electrons [34], while the higher-Q2 data are taken
from 1H(e, e′π+)n measurements at CEA/Cornell [35],
DESY [36] and JLab [37]. For comparison, the leading-
order pQCD prediction from eq. (5) is shown in fig. 1.
Although the region of applicability of the pQCD result
is a priori unknown, the pion represents the best hope of
observing the onset of the asymptotic behavior experimen-
tally (the corresponding pQCD calculation of the nucleon
form factors significantly underestimates the data at the
same Q2).

There have been a number of calculations of the elastic
pion form factor at low Q2, for instance using the QCD
sum rule approach [38]. Rather than rely on any specific
model, however, in this analysis we use empirical data
to calculate the elastic contribution to the pion structure
function. For convenience, and for later use in sects. 4
and 5, we present a simple parameterization of the pion
elastic form factor data in the space-like region, which
is valid over the entire range of Q2 currently accessible,
and smoothly interpolates between the pQCD and photo-
production limits. For the latter, the pion form factor at
low Q2 can be well described in the vector meson dom-
inance hypothesis, in which Fπ(Q2) ∼ 1/(1 + Q2/m2

ρ).
A best fit to the low-Q2 data using the simple monopole
form is shown in fig. 1 (dashed line), with a cut-off mass
≈ 0.74 GeV. The monopole fit is not compatible, how-
ever, with the behavior at high Q2 expected from pQCD.
Building in the Q2 → 0 and Q2 → ∞ constraints, eq. (5),
the available form factor data can be fitted by the form

Fπ(Q2) =
1

1 +Q2/m2
ρ

(
1 + c1Z + c2Z

2

1 + c3Z + c4Z2 + c5Z3

)
, (6)

where Z = log(1+Q2/Λ2), and Λ is the QCD scale param-
eter. The form (6) is similar to that proposed in ref. [39]
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Table 1. Fit parameters for the pion form factor in eq. (6), as
discussed in the text.

c1 c2 c3 c4

fit I −0.201 0.020 −0.030 −0.093
fit II 0.100 0.060 0.538 −0.249

within a dispersion relation analysis; however, the form
there uses 2 additional parameters, and takes a rather
large value of Λ ∼ 1 GeV. Note that the parameterization
(6) is valid only in the space-like region; for a recent dis-
cussion of the properties of Fπ(Q2) in the time-like region
see ref. [40].

The best-fit parameters c1...4 which give the minimum
χ2 are given in table 1. The parameter c5 is constrained
by the pQCD asymptotic limit, c5 = m2

ρ(β0/32π2f2
π)c2,

where β0 = 11−2Nf/3 (= 9 for the 3-flavor case) [41]. For
the QCD scale parameter we take Λ = 0.25 GeV. For com-
pleteness, we offer two parameterizations, which approach
the pQCD limit (5) differently: in fit I the form factor be-
comes dominated by hard scattering at Q2 ∼ 100 GeV2,
consistent with semi-phenomenological expectations [33],
while in fit II around half of the strength of the form factor
at this scale still comes from soft contributions. These are
indicated by the solid lines in fig. 1. Better quality data are
needed to constrain Fπ(Q2) at higher Q2 (� 2 GeV2). To
this end, there are plans to measure the pion form factor
at an energy-upgraded Jefferson Lab to Q2 ≈ 6 GeV2 [23].

4 Pion structure function

Going from elastic pion scattering (W = mπ) to the more
general case of inelastic scattering (W > mπ), in this sec-
tion we analyze the pion structure function, Fπ

2 , in terms
of an OPE of its moments in QCD, and obtain an esti-
mate for the size of higher twists corrections to the scaling
contribution. Following this we discuss the role of higher
twists in the pion structure function at large x, and com-
pare several models for the x → 1 behavior of Fπ

2 with
data from Drell-Yan experiments.

4.1 Moments

From the operator product expansion in QCD, moments
of the pion Fπ

2 structure function, defined as

Mn(Q2) =
∫ 1

0

dx xn−2 Fπ
2 (x,Q

2) , (7)

can be expanded perturbatively at large Q2 as a power
series in 1/Q2, with coefficients given by matrix elements
of local operators of a given twist (defined as the mass
dimension minus the spin of the operator),

Mn(Q2) =
∞∑

k=0

An
k (αs(Q2))

(
1
Q2

)k

. (8)

Here the leading twist (twist 2) term An
0 corresponds to

free quark scattering and, modulo perturbative αs(Q2)
corrections, is responsible for the scaling of the structure
functions. The higher twist contributions An

k>0 represent
matrix elements of operators involving both quark and
gluon fields, and are suppressed by additional powers of
1/Q2. The higher twist terms reflect the strength of non-
perturbative QCD effects, such as multi-parton correla-
tions, which are associated with confinement.

Note that the definition of Mn(Q2) includes the elas-
tic contribution at x = Q2/(W 2 − m2

π + Q2) = 1,
where W is the mass of the hadronic final state. Al-
though negligible at high Q2, the elastic contribution has
been found to be important numerically at intermediate
Q2 for moments of the nucleon structure function [20].
In the definition (7) we use the Cornwall-Norton mo-
ments rather than the Nachtmann moments, which are
expressed in terms of the Nachtmann scaling variable,
ξ = 2x/(1 +

√
1 + 4x2m2

π/Q
2), that includes effects of

the target mass. The use of the Cornwall-Norton moments
was advocated in ref. [20] on the grounds that it avoids
the unphysical region ξ > ξ(x = 1). Because of the small
value of mπ, the difference between the variables x and ξ,
and therefore between the x- and ξ-moments, is negligible
for the pion.

The seminal analysis of De Rújula et al. [11] (see also
ref. [20]) demonstrated that the onset of quark-hadron du-
ality is governed directly by the size of the higher twist ma-
trix elements. In particular, duality implies the existence
of a region in the (n, Q2) space in which the moments of
the structure function are dominated by low-mass reso-
nances, and where the higher twist contributions are nei-
ther dominant nor negligible. For the case of the proton
F2 structure function, even though there are large con-
tributions from the resonance region, conventionally de-
fined as W � 2 GeV, to the n = 2 moment (∼ 70% at
Q2 = 1 GeV2), the higher twists contribute only around
10–20% to the cross-section at the same Q2 [20]. The ques-
tion we wish to address here is whether there exists an
analogous region for the pion, where the resonance contri-
butions are important, but higher twist effects are small
enough for duality to be observed.

Of course, the distinction between the resonance region
and the deep inelastic continuum is in practice somewhat
arbitrary. In the large Nc limit of QCD, for instance, the
final state in DIS from the pion is populated by infinitely
narrow resonances even in the Bjorken limit, while the
structure function calculated at the quark level produces
a smooth, scaling function [14]. Empirically, the spectrum
of the excited states of the pion is expected to be rather
smooth sufficiently above the ρ mass, for W � 1 GeV.
Resonance excitation of heavier mesons is not expected to
be easily discernible from the DIS continuum —the a1-
meson, for instance, at a mass W ∼ 1.3 GeV, has a rather
broad width (∼ 350–500 MeV) [42].

Moments of the pion structure function can also be
calculated directly via lattice QCD, and first simulations
of the leading as well as some specific higher twist contri-
butions have been performed [43]. Although the detailed
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x dependence, especially at large x (see next section) re-
quires knowledge of high moments [44], considerable in-
formation on the shape of the valence distribution can
already be extracted from just the lowest 3 or 4 mo-
ments [45]. Calculations of a further 2 or 3 moments may
be sufficient to allow both the valence and sea distribu-
tions to be extracted as a function of x.

Measurements of the pion structure function have
been made using the Drell-Yan process [46–50] in πN
scattering, covering a large range of x, 0.2 � x � 1, and
for Q2 typically � 20 GeV2. It has also been extracted
from the semi-inclusive DIS data at HERA for very
low x and high W [26] (see also ref. [51]). However,
there are no data on Fπ

2 at low W , in the region where
mesonic resonances would dominate the cross-section.
The spectrum could in principle be reconstructed by
observing low-t neutrons produced in the semi-inclusive
charge-exchange reaction, ep → enX, where t is the
momentum transfer squared between the proton and
neutron, and extrapolating to the pion pole to ensure
π exchange dominance. In the meantime, to obtain a
quantitative estimate of the importance of the resonance
region, we model the pion spectrum at low W in terms
of the elastic and ρ pole contributions, on top of the DIS
continuum evolved down from the higher-Q2 region, as
outlined in ref. [21]. The leading twist structure function
can be reconstructed from parameterizations [52–54] of
quark distributions in the pion obtained from global anal-
yses of the pion Drell-Yan data. Unless otherwise stated,
in this work we use the low-Q2 fit from ref. [52], which
gives the leading twist parton distributions in the pion for
Q2 > 0.25 GeV2 (our conclusions are not sensitive to the
use of other parameterizations [53,54]). For the elastic
contribution we use the parameterization in eq. (6) (fit I).

The contribution of the ρ-meson is described by the
π → ρ transition form factor, Fπρ(Q2), which is normal-
ized such that Fπρ(0) = 1, and is expected to fall as 1/Q4

at large Q2 (compared with 1/Q2 for Fπ(Q2)). Since there
is no empirical information on Fπρ(Q2), we consider sev-
eral models in the literature, based on a relativistic Bethe-
Salpeter vertex function [55], a covariant Dyson-Schwinger
approach [56], and light-cone QCD sum rules [57]. These
represent a sizable range (∼ 100%) in the magnitude of
Fπρ(Q2) over the region of Q2 covered in this analysis,
with the calculation of ref. [57] giving a somewhat smaller
result than those in refs. [55,56]. The spread in these pre-
dictions can be viewed as an indicator of the uncertainty
in this contribution. The π → ρ transition form factor can
be extracted, for instance, from ρ electroproduction data
off the proton, ep → epρ0 [24,25], by reconstructing the
decay of the ρ0 into two pions. It also forms an impor-
tant input into the calculation of meson-exchange current
contributions to deuteron form factors at large Q2 [58].

The contributions from the “resonance region”,
W < Wres ≡ 1 GeV, to the moments of the pion structure
function,

M res
n (Q2) =

∫ 1

xres

dx xn−2Fπ
2 (x,Q

2) , (9)
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Fig. 2. Contributions to moments of the pion structure func-
tion from the resonance region, W < Wres = 1 GeV, relative
to the total.
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Fig. 3. Lowest (n = 2) moment of the pion structure function.
The leading twist (solid line) and elastic (dashed line) contri-
butions are shown, and the shaded region represents the total
moment using different models for the π → ρ transition.

are plotted in fig. 2 as a ratio to the total moment,
for n = 2, . . . , 10. The integration in M res

n (Q2) is from
xres = Q2/(W 2

res − m2
π + Q2) to the elastic point,

x = 1. The low-W region contributes as much as 50% at
Q2 = 2 GeV2 to the total n = 2 moment, decreasing to
� 1% for Q2 � 10 GeV2 [21]. Higher moments are more
sensitive to the large-x region, and subsequently receive
larger contributions from low W . The n = 10 moment, for
example, is almost completely saturated by the resonance
region at Q2 = 2 GeV2, and even at Q2 = 10 GeV2 still
receives some 40% of its strength from W < 1 GeV even
at Q2 = 10 GeV2.

The relatively large magnitude of the resonance con-
tributions suggests that higher twist effects play a more
important role in the moments of the pion structure func-
tion than for the case of the nucleon. In fig. 3 the lowest
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Fig. 4. Higher twist contribution to the n = 2 moment of the
pion structure function, as a ratio to the total moment. The
band indicates the uncertainty due to the model dependence
of the π → ρ transition form factor.

(n = 2) moment of Fπ
2 is displayed, together with its var-

ious contributions. The leading twist component,

MLT
n (Q2) =

∫ 1

0

dx xn−2Fπ
2,LT(x,Q

2) , (10)

is expressed (at leading order in αs(Q2)) in terms of the
twist-2 quark distributions in the pion,

Fπ
2,LT(x,Q

2) =
∑

q

e2q xqπ(x,Q2) , (11)

where the valence part of qπ is normalized such that∫
dx qπ

val(x,Q
2) = 1. The leading twist contribution is

dominant at Q2 > 5 GeV2, while the deviation of the to-
tal moment from the leading twist at lower Q2 indicates
the increasingly important role played by higher twists
there. While negligible beyond Q2 ≈ 4 GeV2, the elas-
tic contribution is as large as the leading twist already at
Q2 ≈ 1 GeV2. The π → ρ contribution is more uncertain,
and the band in fig. 3 represents the total moment calcu-
lated using different models [55–57] of Fπρ(Q2). However,
while the current uncertainty in this contribution is con-
servatively taken to be ∼ 100%, doubling this would lead
to a modest increase of the band in fig. 3. Uncertainty
from poor knowledge of the leading twist distributions at
small x [52–54] is not expected to be large.

To extract the higher twist part of the moments, one
needs to subtract the leading twist contribution in eq. (10)
from the total moments Mn(Q2),

MHT
n (Q2) = Mn(Q2)−MLT

n (Q2)−MTM
n (Q2) , (12)

where MTM
n (Q2) arises from target mass corrections. Be-

cause the target mass correction, which is formally of lead-
ing twist, is proportional to m2

π/Q
2, its contribution will

only be felt when Q2 ∼ m2
π, which is far from the region

where the twist expansion is expected to be valid. In prin-
ciple nonperturbative effects can mix higher twist with
higher-order effects in αs, rendering the formal separation
of the two problematic [59–62]. Indeed, the perturbative
expansion itself may not even be convergent. However, by
restricting the kinematics to the region of Q2 in which the
1/Q2 term is significantly larger than the next-order cor-
rection in αs, the ambiguity in defining the higher twist
terms can be neglected [20]. In fig. 4 the higher twist con-
tribution to the n = 2 moment is displayed as a function
of Q2. The band again represents an estimate of the un-
certainty in the π → ρ transition form factor, as in fig. 3.
At Q2 = 1 GeV2 the higher twist contribution is as large
as the leading twist, decreasing to ∼ 1/3 at Q2 = 2 GeV2,
and vanishes rapidly for Q2 � 5 GeV2.

As observed in ref. [21], the size of the higher twist
contribution at Q2 ∼ 1 GeV2 appears larger than that
found in similar analyses of the proton F2 [20] and g1 [63]
structure functions. This can be qualitatively understood
in terms of the intrinsic transverse momentum of quarks
in the hadron, 〈k2

T 〉, which typically sets the scale of
the higher twist effects. Since the transverse momen-
tum is roughly given by the inverse size of the hadron,
〈k2

T 〉 ∼ 1/R2, the smaller confinement radius of the pion
means that the average 〈k2

T 〉 of quarks in the pion will
be larger than that in the nucleon. Therefore, the magni-
tude of higher twists in Fπ

2 is expected to be somewhat
larger (O(50%)) than in F p

2 . The E615 Collaboration in-
deed finds the value 〈k2

T 〉 = 0.8 ± 0.3 GeV2, within the
higher twist model of ref. [64]. The experimental value
is obtained by analyzing the x → 1 dependence of the
measured µ+µ− pairs produced in πN collisions, and the
angular distribution at large x. We discuss this in more
detail below.

4.2 x → 1 behavior

The x → 1 behavior of structure functions is important
for several reasons. As discussed in the previous section,
higher moments of Fπ

2 receive increasingly large contribu-
tions from the large-x region, so that a reliable extraction
of higher twists from data requires an accurate determi-
nation of quark distributions at x ∼ 1. In addition, since
the x ∼ 1 region is dominated by the lowest qq̄ Fock state
component of the pion light-cone wave function, in which
the interacting quark carries most of the momentum of
the pion, the behavior of the structure function at x → 1
is expected to be correlated with that of the elastic form
factor at Q2 → ∞. In this section we review various pre-
dictions for Fπ

2 in the limit as x → 1, and relate these
to the effects of higher twists discussed in the previous
section on the x → 1 behavior of the structure function.

Working within a field-theoretic parton model frame-
work which predates QCD, Drell and Yan [5], and West [6]
showed that if the asymptotic behavior of the form factor
is (1/Q2)n, then the structure function should behave as
(1−x)2n−1 as x → 1. This is referred to as the Drell-Yan-
West (DYW) relation. Simple application to the case of
the pion, in which the elastic form factor behaves as 1/Q2
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at large Q2, leads to the prediction

Fπ
2 (x → 1) ∼ (1− x) . (13)

This behavior is also predicted in the model of ref. [8].
A dynamical basis for the exclusive-inclusive relation

was provided with the advent of QCD. By observing that
the interacting quark at large x is far off its mass shell,
Farrar and Jackson [65] derived the x → 1 behavior of the
structure function at x → 1 by considering perturbative
one-gluon exchange between the q and q̄ constituents in
the lowest Fock state component of the pion wave func-
tion. They found a characteristic∼ (1−x)2 dependence for
the transverse part of Fπ

2 , in apparent contradiction with
the naive DYW relation (the breakdown of the DYW re-
lation for spinless hadrons was discussed earlier by Land-
shoff and Polkinghorne [9]). The longitudinal cross-section
was found to scale like 1/Q2 relative to the transverse [65].
Using the so-called “softened” field theory [66], in which
the pion-quark vertex function is described by a Bethe-
Salpeter–type equation, Ezawa [10] found a similar (1−x)2
behavior.

Gunion et al. [67] later generalized the gluon exchange
description to include subleading 1/Q2 corrections for
both the Fπ

2 and longitudinal Fπ
L structure functions at

x → 1,

Fπ
2 (x) ∼ S2(1− x)2 +

T2

Q2
, (14)

Fπ
L (x) ∼

SL

Q2
, (15)

where the constants S2, T2 and SL are determined phe-
nomenologically. More generally, according to the pQCD
“counting rules” [30], the leading components for any
hadron with n spectator (noninteracting) partons were
found [67] to behave as (1 − x)2n−1+2|∆Sz| in the x → 1
limit, where ∆Sz is the difference between the helicities
of the hadron and the interacting quark. More recently,
other nonperturbative models have been used to calcu-
late the pion structure function [68]; however, because of
difficulties associated with incorporating high-momentum
components of the wave function, these may not be reli-
able in the x ∼ 1 region.

The predicted x → 1 behavior of the pion structure
function can be tested by comparing with Drell-Yan data.
The x dependence of the pion quark distributions has been
measured in Drell-Yan µ+µ− pair production in πN colli-
sions (in practice, πA) at BNL [46], CERN [48,49] and at
Fermilab [47,50]. The data for qπ(x) ≡ uπ+

(x) = d̄π+
(x)

from the most recent Fermilab experiment [50] are shown
in fig. 5 for 4.05 < mµµ < 8.55 GeV, where mµµ is the
invariant mass of the µ+µ− pair. The scale dependence
within this region was found to be small [50]. The data
were fitted using the form

qπ(x,Q2) = Nxa(1− x)b + γ
2 x2

9 Q2
, (16)

where N is a constant, fixed by normalization, and the
scale Q2 is identified with the the dimuon mass squared,
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Fig. 5. Valence quark distribution in the pion extracted from
the FNAL E615 Drell-Yan experiment [50], fitted with lead-
ing twist (dashed line) and leading + higher twist (solid line)
contributions, as in eq. (16). The functional forms (1− x) and
(1− x)2 (dotted lines) are shown for comparison.

m2
µµ. The form (16) parameterizes both leading and higher

twist effects. Including corrections from Q2 evolution, the
best-fit value for the exponent governing the x → 1 be-
havior was found to be b ≈ 1.21–1.30 [50], consistent
with the findings of the earlier CERN experiments [48,49].
The result of the leading twist E615 fit with b = 1.27 is
shown in fig. 5 (dashed line). The forms (1−x) [5,6,8] and
(1 − x)2 [10,30,65,67,69] are also shown for comparison
at large x (dotted lines). The data clearly favor a shape
closer to (1 − x), rather than the (1 − x)2 shape implied
by the counting rules [30].

It has been suggested [64] that higher twist effects in
the pion structure function could obscure the true leading
twist behavior. The higher twist coefficient T2 was cal-
culated in a pQCD-inspired model by Berger and Brod-
sky [64] in terms of the intrinsic quark momentum in the
pion,

T2 =
2
9
〈k2

T 〉
Q2

. (17)

Since it is independent of x, it can be argued [64] that
the higher twist contribution may in fact dominate the
scaling term at fixed Q2(1 − x) as Q2 → ∞, and mimic
the observed (1−x) dependence if 〈k2

T 〉 ≈ 1 GeV2. Conway
et al. [50] subsequently performed an analysis of the E615
data by fitting also the term γ in eq. (16). The extracted
value of b was found to be largely independent of the value
of γ chosen. To investigate whether the quadratic term
may be masked by an additional component not included
in the model [64], Conway et al. searched for a nonzero
intercept of Fπ

2 at x = 1. The fit with γ = 0.83 GeV2

was found to be only marginally better than that with
γ = 0 (the significance being 2.5 standard deviations),
although the fit at x ∼ 1 was also sensitive to the input
nucleon sea distributions in the analysis of the Drell-Yan
data. The leading + higher twist fit with γ = 0.83 GeV2
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is shown in fig. 5 (solid curve). The effect on the overall fit
is indeed quite marginal, although at very large x (� 0.9)
the differences between this and the pure leading twist fit
are more apparent.

Mueller [69] has pointed out that Sudakov effects,
which introduce terms like αs(Q2) ln2(1/(1− x)) into the
x → 1 analysis, may invalidate the usual renormalization
group analysis of DIS at large x. Including power and
double-logarithmic corrections, one finds that the x → 1
behavior of Fπ

2 in this case becomes [69]

Fπ
2 ∼ (1− x)2 exp

{
−4CF

β0

[
ln

1
1− x

ln lnQ2

− ln2(1/(1− x))
2 lnQ2

− ln
1

1− x
ln ln

1
1− x

]}
.

(18)

When ln(1/(1 − x)) = O(lnQ2/ ln lnQ2), higher twist
terms compete with the leading twist, and the dominant
contribution is then from the longitudinal structure func-
tion, which behaves as Fπ

L ∼ (1/Q2) ln(Q2(1−x)). Taking
this criterion literally, for Q2 ∼ 1 GeV2 this would oc-
cur at x ∼ 0.93, while for Q2 ∼ 100 GeV2 the higher
twists would be expected to dominate at x � 0.97. A cau-
tionary note regarding eq. (18), however, is that single-
logarithmic effects have not been included in the analysis,
and their effects on eq. (18) are unclear. Further discus-
sion of these effects can be found in refs. [59,69]. Carlson
and Mukhopadhyay [70] have also studied the effects of
radiative corrections on the x → 1 behavior of the struc-
ture function, and the appearance of higher twists in the
low-W region. In particular, the scale dependence of the
(1−x) exponent was found to be (1−x)b+c ln ln Q2

, with c
calculable perturbatively. The Q2-dependence of the pion
structure function at x ∼ 1 clearly deserves further study.

A cleaner signature of high twist effects at large x
comes from the angular distribution of dimuon pairs pro-
duced in Drell-Yan collisions. The angular dependence
of the Drell-Yan cross-section is given by [71] (see also
ref. [72])

dσ
dΩ

∝ 1 + λ cos2 θ + µ sin 2θ cosφ+
ν

2
sin2 θ cos 2φ ,

(19)

where the angles θ and φ are defined in the µ+µ− rest sys-
tem, and λ, µ and ν are functions of the kinematic vari-
ables. In the model of ref. [64], the leading twist (1− x)2
term is associated with a (1+cos2 θ) dependence, while the
higher twist 〈k2

T 〉/Q2 term has a characteristic sin2 θ de-
pendence. In particular, the transverse cross-section cor-
responds to λ = 1, while the deviation from a pure
(1 + cos2 θ) dependence would indicate the presence of
longitudinal or higher twist contributions. The data [50]
are consistent with λ = 1 for x � 0.6, while the larger-x
data show clear deviations from pure transverse scatter-
ing, suggesting the presence of higher twist contributions
at these x values. With the fitted value of β (≈ 1.2–1.3),
the measured x dependence of λ could be accommodated

with 〈k2
T 〉 ≈ 0.8 GeV2. Using the value β = 2 predicted by

the pQCD counting rules, the observed λ values could be
made to fit the data by requiring that 〈k2

T 〉 ∼ 0.1 GeV2.
However, in addition to being much smaller than the value
〈k2

T 〉 ∼ 1 GeV2 suggested in ref. [64], this scenario is dis-
favored by a direct comparison with the x dependence of
qπ(x), as discussed above.

While the values of the quark intrinsic transverse mo-
mentum extracted from the Drell-Yan data are consistent
with the size of the higher twist effects observed in sect. 3,
there does appear to be a clear conflict between the count-
ing rule predictions for the x → 1 behavior of Fπ

2 and the
empirical x dependence. Several reasons could account for
this discrepancy. Even higher twist effects, beyond those
of twist-4 parameterized in eq. (16), could be present and
obfuscate an underlying (1 − x)2 leading twist behavior.
This appears unlikely, however, given the relatively large
Q2 values (Q2 � 20 GeV2) at which the data are sampled,
and the rapid fall off of the higher twist contributions to
the moments observed in sect. 4.1.

On the other hand, as alluded to above, the extraction
of the pion structure function requires as input the parton
distributions in the nucleon. Since the bulk of the data for
x > 0.5 corresponds to a nucleon light-cone momentum
fraction xN ≈ 0.05–0.1, errors may be introduced into the
analysis through poor knowledge of the sea quark, or (at
higher order) gluon, distributions in the nucleon. Further-
more, because the data are taken on nuclear targets (e.g.
tungsten for the E615 experiment), nuclear effects may
give rise to corrections to the nucleon quark distributions,
especially in the region xN ∼ 0.05, where nuclear shad-
owing is known to play an important role [73]. The effects
of using more modern nucleon parton distributions, and
including nuclear corrections in the analysis, are currently
being investigated [74].

It may also be that the asymptotic behavior does not
set in until x is very close to 1, and that the functional
form (16) is simply too restrictive to adequately reflect
this behavior, in which case a more sophisticated param-
eterization would be required. Further, nonobservation of
the predicted counting rule behavior may not necessar-
ily imply a breakdown of pQCD. The derivation of the
counting rules for large-x structure functions from Feyn-
man diagrams in terms of hard gluon exchanges between
quarks involves an infrared cut-off mass parameter, m,
which regulates the integrals when kT → 0 [67,75]. Al-
though an analysis based on pQCD should be valid also
form = 0, the counting rule results are sensitive to the pa-
rameter,m, and comparison with phenomenology requires
a nonzero value [67].

Regardless of the ultimate x → 1 behavior of Fπ
2 ex-

tracted from data, it is instructive to examine whether
the asymptotic inclusive-exclusive relations between the
pion structure function and the pion elastic and transi-
tion form factors at large Q2 can provide additional con-
straints. In the next section we use local quark-hadron
duality to study these relations in more detail.
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5 Local quark-hadron duality

There has been a revival of interest recently in the phe-
nomenon of Bloom-Gilman duality in electron-nucleon
scattering. This has been stimulated largely by recent
high-precision measurements [4] at Jefferson Lab of the F2

structure function of the proton, which demonstrated that
duality works remarkably well for each of the prominent
low-lying resonance regions, including the elastic [76,77],
as well as for the integrated structure function, to rather
low values of Q2. Ongoing and planned future studies
will focus on duality in other structure functions, such as
g1 [78] and FL [79], and for hadrons other than the proton.

While the existence of local quark-hadron duality ap-
pears inevitable in QCD at asymptotically large mo-
menta [14,80], it is not a priori clear that it should work at
finiteQ2. Indeed, there are reasons why at lowQ2 it should
not work at all [14], and its appearance may in principle
be due to accidental cancellations (due to quark charges
in the proton [15,81], for instance) of possibly large higher
twist effects. A systematic study of local duality for other
hadrons, such as the pion, is therefore crucial to revealing
the true origin of this phenomenon.

Shortly after the original observations of Bloom-
Gilman duality for the proton [3], generalizations to the
case of the pion were explored. By extending the finite-
energy sum rules [82] devised for the proton duality stud-
ies, Moffat and Snell derived a local duality sum rule relat-
ing the elastic pion form factor with the scaling structure
function of the pion [83],

[Fπ(Q2)]2 ≈
∫ ωmax

1

dω νWπ
2 (ω) , (20)

where νWπ
2 ≡ Fπ

2 is a function of the scaling variable
ω = 1/x. The upper limit ωmax = 1 + (W 2

max − m2
π)/Q

2

was set in ref. [83] byWmax ≈ 1.3 GeV, in order for the in-
tegration region to include most of the effect of the hadron
pole, and not too much contribution from higher reso-
nances [83]. To test the validity of the finite-energy sum
rule relation (20), Moffat and Snell [83], and later Ma-
hapatra [84], constructed Regge-based models of the pion
structure function (their analyses predated the Drell-Yan
pion structure function measurements [46–50]) to compare
with the then available pion form factor data.

The existence of Drell-Yan data on Fπ
2 now allows one

to test this relation quantitatively using only phenomeno-
logical input. Using parameterizations of the Fπ

2 (x) data
from ref. [50] (see fig. 5), the resulting form factor Fπ(Q2)
extracted from eq. (20) is shown in fig. 6. The agreement
appears remarkably good. On the other hand, the mag-
nitude of the form factor depends somewhat on the pre-
cise value chosen for Wmax, so the agreement in fig. 6
should not be taken too literally. Nevertheless, the shape
of the form factor is determined by the x dependence of the
structure function at large x. In particular, while a (1−x)
behavior leads to a similar Q2-dependence to that for the
E615 fit, assuming a (1−x)2 behavior gives a form factor
which drops more rapidly with Q2. This simply reflects
the kinematic constraint (1− 1/ω) ∼ 1/Q2 at fixed W .
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Although the apparent phenomenological success of
the local duality relation (20) is alluring, there are the-
oretical reasons why its foundations may be questioned.
In fact, the workings of local duality for the pion are even
more intriguing than for the nucleon. Because it has spin 0,
elastic scattering from the pion contributes only to the lon-
gitudinal cross-section (Fπ

T (x = 1, Q2) = 0). On the other
hand, the spin 1/2 nature of quarks guarantees that the
deep inelastic structure function of the pion is dominated
at large Q2 by the transverse cross-section [11,65]. Taken
at face value, the relation (20) would suggest a nontrivial
duality relation between longitudinal and transverse cross-
sections. Whether local duality holds individually for lon-
gitudinal and transverse cross-sections, or for their sum,
is currently being investigated experimentally. Indications
from proton data are that indeed some sort of duality
holds for both the transverse and longitudinal structure
functions of the proton individually [4,79].

While the elastic form factor of the pion is purely lon-
gitudinal, the π → ρ transition is purely transverse. It has
been suggested [11] that the average of the pion elastic
and π → ρ transition form factors may instead dual the
deep-inelastic pion structure function at x ∼ 1. If we take
the simple model used in sect. 4 for the low-W part of
the pion structure function, in which the inclusive pion
spectrum at W � 1 GeV is dominated by the π → π and
π → ρ transitions, we can estimate the degree to which
such a duality may be valid. Generalizing eq. (20) to in-
clude the lowest-lying longitudinal and transverse contri-
butions to the structure function, one can replace the left-
hand side of (20) with [Fπ(Q2)]2 + ωρ[Fπρ(Q2)]2, where
ωρ = 1 + (m2

ρ −m2
π)/Q

2.
The sum of the lowest two “resonance” contributions

(elastic + ρ) to the generalized finite-energy sum rule is
shown in fig. 7 as a ratio to the corresponding leading
twist DIS structure function over a similar range of W .
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Fig. 7. Ratio of the pion resonance (elastic + π → ρ transi-
tion) contributions relative to the DIS continuum, for different
values of Wmax. The two sets of upper and lower curves reflect
the uncertainties in the π → ρ transition form factor.

The upper and lower sets of curves envelop different mod-
els [55–57] of Fπρ(Q2), which can be seen as an indica-
tor of the current uncertainty in the calculation. Inte-
grating to Wmax = 1 GeV, the resonance/DIS ratio at
Q2 ∼ 2 GeV2 is ∼ 50±30% above unity, and is consistent
with unity for Q2 ∼ 4–6 GeV2 (solid curves). As a test
of the sensitivity of the results to the value of Wmax, the
resonance/DIS ratio is also shown for Wmax = 1.3 GeV
(dotted curves). In this case the agreement is better for
Q2 ∼ 1–3 GeV2, with the ratio being ∼ 30 ± 20% below
unity for Q2 ∼ 4–6 GeV2.

Given the simple nature of the model used for the ex-
citation spectrum, and the poor knowledge of the π → ρ
transition form factor, as well as of the pion elastic form
factor beyond Q2 ≈ 2 GeV2, the comparison can only be
viewed as qualitative. However, the agreement between
the DIS and resonance contributions appears promising.
Clearly, data on the inclusive π spectrum at low W would
be invaluable for testing the local duality hypothesis more
quantitatively. In addition, measurement of the individual
transverse and longitudinal cross-sections of the pion, us-
ing Rosenbluth separation techniques, would allow duality
to be tested separately for the longitudinal and transverse
structure functions of the pion.

6 Conclusion

Understanding the structure of the pion represents a fun-
damental challenge in QCD. High-energy scattering ex-
periments reveal its quark and gluon substructure, while
at low energies its role as a Goldstone boson mode as-
sociated with chiral symmetry breaking in QCD is essen-
tial in describing the long-range structure and interactions
of hadrons. We have sought to elucidate the structure of
the pion by considering its response to electromagnetic
probes, focusing in particular on the connection between
inclusive and exclusive channels.

The relation between the pion structure function and
the pion elastic and transition form factors has been stud-
ied in the context of quark-hadron duality. Moments of
the pion structure function have been evaluated, and the
role of the resonance region studied, assuming that the
low-W resonant spectrum is dominated by the elastic and
π → ρ transitions. The contribution of the resonance
region (W � 1 GeV) to the lowest moment of Fπ

2 is
∼ 50% at Q2 ≈ 2 GeV2, and only falls below 10% for
Q2 � 5 GeV2. The elastic component, while negligible for
Q2 � 3 GeV2, is comparable to the leading twist contri-
bution at Q2 ≈ 1 GeV2. Combined, this means that the
higher twist corrections to the n = 2 moment are ∼ 50%
atQ2 = 1 GeV2,∼ 30% atQ2 = 2 GeV2, and only become
insignificant beyond Q2 ≈ 6 GeV2.

Uncertainties on these estimates are mainly due to the
poor knowledge of the inclusive pion spectrum at low W ,
which limits the extent to which duality in the pion can be
tested quantitatively. Only the elastic form factor has been
accurately measured to Q2 ≈ 2 GeV2, although at larger
Q2 it is poorly constrained. The inclusive pion spectrum
can be extracted from data from the semi-inclusive charge-
exchange reaction, ep → enX, at low t, for instance at
Jefferson Lab [25]. This could also allow one to determine
the individual exclusive channels at low W . In addition,
a Rosenbluth separation would allow the transverse and
longitudinal structure functions to be extracted.

Within the current uncertainties, the higher twist ef-
fects in the pion appear larger than the analogous cor-
rections extracted from moments of the nucleon struc-
ture functions [20,63]. This can be generically understood
in terms of the larger intrinsic transverse momentum of
quarks, which governs the scale of the 1/Q2 corrections,
in the pion than in the nucleon, associated with the smaller
pion confinement radius. The implication is that duality
would therefore be expected to set in later (at larger Q2)
for the pion than for the nucleon.

Higher twist effects have also been observed in the pion
structure function at large x by the E615 Collaboration
at Fermilab [50]. The x dependence and angular distribu-
tion of µ+µ− pairs produced in πN collisions at x ∼ 1
suggests a value 〈k2

T 〉 = 0.8 ± 0.3 GeV2, which is larger
than the typical quark transverse momentum in the nu-
cleon (O(500 MeV)). On the other hand, the measured
x dependence appears to be harder than that predicted by
counting rules [30] or models based on perturbative one-
gluon exchange [10,64,65,67], favoring a (1−x) shape over
a (1− x)2 dependence. A reanalysis [74] of the Drell-Yan
data to take into account nuclear corrections and updated
sea quark distributions in the nucleon, which are used as
input into the analysis, is necessary for a definitive assess-
ment of the validity of the various approaches. Additional
modification of the x → 1 behavior due to Sudakov-like
effects [69] may also need to be considered before drawing
final conclusions about the implications of the observed
x → 1 dependence. There are also plans to measure Fπ

2

in semi-inclusive reactions over a range of x at Jeffer-
son Lab [27] to confirm the Drell-Yan and semi-inclusive
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HERA measurements, which should allow a more thor-
ough exploration of the higher twist effects at lower Q2.

The specific x → 1 behavior of the pion structure func-
tion has consequences for the Q2-dependence of the elas-
tic pion form factor, if one assumes the validity of local
quark-hadron duality for the pion. In particular, using pa-
rameterizations of the Drell-Yan structure function data,
the existing data on Fπ(Q2) can be fitted if the upper limit
of the integration region above the elastic peak extends to
Wmax ≈ 1.3 GeV. Analogous fits with a (1−x)2 shape fall
off too rapidly with Q2 and do not fit Fπ(Q2) as well.

On the other hand, there may be limitations of the
extent to which local duality can hold for the pion, as
such duality implies a nontrivial relationship between the
longitudinal and transverse cross-sections. It may in fact
be more appropriate to examine whether the sum of the
longitudinal (elastic) and transverse (π → ρ transition)
contributions duals the DIS structure function at low W .
Using phenomenological models for the π → ρ form fac-
tor, our estimate for the sum of the lowest-lying reso-
nant contributions is in qualitative agreement with the
corresponding scaling contribution in the same W inter-
val. However, empirical information on the strength and
Q2-dependence of Fπρ(Q2) is necessary for a more quan-
titative test. The π → ρ transition form factor can in
practice be extracted from ρ electroproduction data [24].
At larger Q2, the π → ρ transition is expected to be sup-
pressed relative to the elastic contribution, and to test
the local duality here will require a more accurate deter-
mination of Fπ(Q2). The pion form factor Fπ(Q2) will
soon be measured to Q2 = 2.5 GeV2 at Jefferson Lab [22]
in π+ electroproduction from the proton, and possibly to
Q2 = 6 GeV2 with an energy-upgraded facility [23].

Finally, this analysis can be easily extended to the
strangeness sector, to study the duality between the form
factor and structure function of the kaon. Data from the
Drell-Yan reaction in K−-nucleus collisions [85] indicate
that the quark distribution in the kaon is similar to that
in the pion, and measurements of the kaon form factor,
FK(Q2), have also recently been reported [86]. Future
measurements of FK(Q2) at larger Q2 (∼ 2 GeV2) [22]
would allow the first quantitative test of local Bloom-
Gilman duality in strange hadrons.
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